Hypercholesterolemia - or high cholesterol - is a condition that affects over 30% of adults in the United States each year. Hypercholesterol refers to excess levels of total or LDL cholesterol (a type of fat) in the blood. High cholesterol can increase the risk of cardiovascular events like heart attack and stroke. A Functional Medicine Approach to
Hypercholesterolemia focuses on the root cause and can be used alongside conventional treatments for a comprehensive approach. Below is an excellent example of one patient's integrative healthcare journey to lowering her cholesterol. If you or a loved one are looking to lower cholesterol naturally, you'll find this story encouraging!
[signup]
CC: Hypercholesterolemia
Jen was a 58-year-old cis female who presented to our clinic looking for natural options to manage her hypercholesterolemia. Jen prided herself on having a healthy diet and lifestyle and was surprised when her cholesterol came back elevated - close to 300 mg/dl - at her yearly check-up. She presented to our clinic wondering what she could do to find and treat the root cause so that her cholesterol could return to normal.
Patient Background
Jen was a copywriter who worked from home and enjoyed many healthy interests - organic cooking, regular yoga and pilates workouts, and meditation. Her health mattered deeply to her, and she'd been consuming a primarily organic, vegetarian, Mediterranean-style diet for two decades prior to seeing us. At her regular family medicine check-up, Jen's primary care clinician told her that her cholesterol was dangerously high - 293 mg/dl (normal is 100-199 mg/dl). She'd advised Jen to treat her cholesterol with medication, which Jen declined due to her preference not to take pharmaceuticals if possible.
Jen's cholesterol had been above 200 since her early 20s, and she was told that this was normal for her, but this recent spike worried her. Jen was confused and wondered why was her cholesterol elevated when she avoided trans fats, ate a plant-based diet, and exercised regularly? Was this number actually dangerous for her? Was there anything she could do besides medication to bring this number down?
If possible, Jen preferred a natural approach to managing all of her health issues. She was committed to doing the work to bring her cholesterol down to healthy ranges using diet and lifestyle. We explained Jen's cholesterol levels to her in a holistic context and then devised a plan to help her achieve normal cholesterol levels.
Nutrient Analysis
At her intake, Jen's nutrient analysis revealed that she tended to consume a diet that was mostly adequate in vitamins and minerals but low in total energy, carbohydrates, proteins, phosphorus, calcium and potassium, copper, and iodine. She also did not consume the top sources of CoQ10 regularly (oily fish like tuna and salmon). Her omega 3 consumption was adequate but suboptimal at 1.5g per day. Additionally, Jen consumed alcohol approximately 3-4 days per week, including beer and wine, and ate out frequently at restaurants for dinner.
Laboratory Workup Ordered At Initial Visit
I first saw Jen virtually in March of 2020, and she brought labs from her last physical in September of 2019 which included high cholesterol and high LDL. She had not changed her diet or lifestyle drastically since these labs. Jenβs other labs (CBC, CMP, iron panel with ferritin) were otherwise normal.
ASCVD Risk
We calculated Jen's ASCVD (Atherosclerotic Cardiovascular Disease) risk using her cholesterol and other biometrics at intake. This is because cholesterol numbers should always be interpreted in the context of other risk factors for cardiovascular disease, including things like blood pressure, smoking status, diabetes status, and more.
Jen's ASCVD risk - even with high cholesterol - was still low at 2.0%, although slightly higher than optimal (1.9%). Our goal was to help Jen reduce her 10-year ASCVD risk by decreasing total and LDL cholesterol using dietary and lifestyle approaches.
Lab Analysis
It's good medicine to rule out causes of hypercholesterolemia like thyroid disorders, diabetes, and kidney disease. Jen's lab work revealed that she had healthy thyroid function, good blood sugar control, and a normal eGFR. This was great news! It meant we could optimize the other aspects of her health.
Interventions
To help Jen heal, we did the following:
Nutrition
My team and I worked with Jen to create a customized food-as-medicine meal plan that allowed her to emphasize fiber, reduce the glycemic index of her diet by increasing protein, and raise her Omega-3 consumption.
Increased protein intake to meet 100% RDI by increasing protein sizes at each meal and doubling the protein powder in her morning smoothie. Increased protein and fiber intake relative to carbohydrate intake results in a better glycemic profile of the diet, which yields better blood lipid control.
Increased fiber intake by adding more nuts and seeds to her diet and an additional serving of fruit. Evidence suggests that increasing fiber intake by 5-10 grams per day can reduce cholesterol levels over time.
Increased servings of salmon each week to naturally get her more CoQ10 from her diet. Some of Jen's supplements we started her on deplete CoQ10, so we wanted to make sure she stayed replete during her course of treatment with us.
Supplements
Red Yeast Rice and CoQ10 formula: 1200mg red yeast rice and 100mg CoQ10 per 2 capsules. Jen took 2 of these capsules twice per day. Red Yeast Rice supplementation generally reduces LDL cholesterol by 15-25% within eight weeks. *Studies show that supplementation with nutrients like folate combined with Red Yeast Rice can reduce LDL cholesterol by 15-31% in 6-48 weeks.
Comprehensive once daily multivitamin to serve as nutritional insurance so that Jen could stay flexible with her diet and lifestyle but still meet her goals. The vitamin recommended contains vitamins A-K, folate biotin, choline, iodine, zinc, selenium, manganese, chromium, molybdenum, boron, inositol, CoQ10, Alpha lipoic acid, lutein, zeaxanthin, and lycopene.
Exercise
We encouraged Jen to include lots of HIIT and weight-bearing exercises in her workout routines to increase the health of her bones and increase her HDL cholesterol. Resistance training has been shown to reduce total and LDL cholesterol levels.
Lifestyle changes
We explained to Jen that some research suggests that regular blood donation has decreased LDL levels, raised HDL cholesterol, and reduced lipid peroxidation (oxidative stress) when done regularly over 24 or more weeks. We encouraged Jen to give blood regularly, which she did.
Follow Up Nutrient Analysis After Individualized Program
Jen's individualized nutrition plan was designed to be healthy, easy to cook, and fun to eat. It was also intended to correct her inadequate intake of total energy, carbohydrates, proteins, minerals, CoQ10, and omega 3's. The nutrient analysis below reveals that she has met >100% RDI for these nutrients except protein and phosphorus each day on average for the five months between April and September of 2020.
While Jen didn't follow her plan closely enough to meet 100% RDI for protein, she did increase her average protein consumption by 10%, from 64% RDI to 74% RDI, and increased her phosphorus intake by 3%. Additionally, she doubled her Omega-3 intake and raised her fiber consumption by 3.2 grams per day on average, close to the 5 grams per day we typically use to lower people's cholesterol over time.
Results from a Functional Medicine Treatment Program
Jen's total cholesterol dropped by 83 points in the five months we worked together. Her LDL cholesterol decreased by 62 points, VLDL by 7 points, and triglycerides dropped by 34 points.
As a result of the changes above, Jenβs ASCVD risk fell from 2.0 to 1.7% ten year risk, which is better than optimal.
If Jen continues on this plan, her cholesterol should decrease, and her ten-year risk should stay better than optimal. This means that her risk of a heart attack, stroke, or other cardiovascular event is less than that of the optimally healthy person of her same age, gender, race, and health history. Our plan is to continue to work with Jenβs primary care doctor to monitor her levels yearly to make sure her ASCVD risk stays low.
Discussion
Optimal cholesterol levels depend very much on what other cardiovascular risk factors are present. Recent evidence suggests that total cholesterol levels of 210-230 may actually be optimal for reducing the overall risk of morbidity and mortality in people ages 55-64 (Jenβs demographic). This data comes from a prospective cohort study of more than 12.8 million adults published in 2019. Because of this data, we rely heavily on ASCVD risk calculation, context, and other health data at my clinic before recommending that people take extreme measures to lower cholesterol below 210-230 mg/dl.
β
Jen's cholesterol was 210 after her treatment program with us. Her 10-year risk of a cardiovascular event was better than optimal, so we did not recommend that she take more drastic measures to lower her cholesterol unless directed by her primary care physician.
Summary
You can reduce cholesterol naturally using a comprehensive nutrition and a lifestyle-based approach. Additionally, cholesterol's impact on cardiovascular risk requires a holistic evaluation of a person's health, history, risk factors, and health behaviors. In this case, Jen used a combination of a food-as-medicine plan, good nutrition, and supplementation protocol helped to improve her cholesterol and ASCVD risk. We hope her story inspires you to know that you and your loved ones can naturally lower cholesterol!
*Note: The client's name has been changed to protect her privacy. All other details are the same!
Hypercholesterolemia - or high cholesterol - is a condition that affects over 30% of adults in the United States each year. Hypercholesterolemia refers to excess levels of total or LDL cholesterol (a type of fat) in the blood. High cholesterol may increase the risk of cardiovascular events like heart attack and stroke. A Functional Medicine Approach to
Hypercholesterolemia focuses on the root cause and can be used alongside conventional treatments for a comprehensive approach. Below is an example of one patient's integrative healthcare journey to managing her cholesterol. If you or a loved one are looking to support healthy cholesterol levels naturally, you'll find this story encouraging!
[signup]
CC: Hypercholesterolemia
Jen was a 58-year-old cis female who presented to our clinic looking for natural options to manage her hypercholesterolemia. Jen prided herself on having a healthy diet and lifestyle and was surprised when her cholesterol came back elevated - close to 300 mg/dl - at her yearly check-up. She presented to our clinic wondering what she could do to find and address the root cause so that her cholesterol could return to a healthier range.
Patient Background
Jen was a copywriter who worked from home and enjoyed many healthy interests - organic cooking, regular yoga and pilates workouts, and meditation. Her health mattered deeply to her, and she'd been consuming a primarily organic, vegetarian, Mediterranean-style diet for two decades prior to seeing us. At her regular family medicine check-up, Jen's primary care clinician told her that her cholesterol was high - 293 mg/dl (normal is 100-199 mg/dl). She'd advised Jen to manage her cholesterol with medication, which Jen declined due to her preference not to take pharmaceuticals if possible.
Jen's cholesterol had been above 200 since her early 20s, and she was told that this was normal for her, but this recent spike concerned her. Jen was confused and wondered why her cholesterol was elevated when she avoided trans fats, ate a plant-based diet, and exercised regularly. Was there anything she could do besides medication to bring this number down?
If possible, Jen preferred a natural approach to managing all of her health issues. She was committed to doing the work to bring her cholesterol down to healthier ranges using diet and lifestyle. We explained Jen's cholesterol levels to her in a holistic context and then devised a plan to help her support normal cholesterol levels.
Nutrient Analysis
At her intake, Jen's nutrient analysis revealed that she tended to consume a diet that was mostly adequate in vitamins and minerals but low in total energy, carbohydrates, proteins, phosphorus, calcium and potassium, copper, and iodine. She also did not consume the top sources of CoQ10 regularly (oily fish like tuna and salmon). Her omega 3 consumption was adequate but suboptimal at 1.5g per day. Additionally, Jen consumed alcohol approximately 3-4 days per week, including beer and wine, and ate out frequently at restaurants for dinner.
Laboratory Workup Ordered At Initial Visit
I first saw Jen virtually in March of 2020, and she brought labs from her last physical in September of 2019 which included high cholesterol and high LDL. She had not changed her diet or lifestyle drastically since these labs. Jenβs other labs (CBC, CMP, iron panel with ferritin) were otherwise normal.
ASCVD Risk
We calculated Jen's ASCVD (Atherosclerotic Cardiovascular Disease) risk using her cholesterol and other biometrics at intake. This is because cholesterol numbers should always be interpreted in the context of other risk factors for cardiovascular disease, including things like blood pressure, smoking status, diabetes status, and more.
Jen's ASCVD risk - even with high cholesterol - was still low at 2.0%, although slightly higher than optimal (1.9%). Our goal was to help Jen support a reduction in her 10-year ASCVD risk by managing total and LDL cholesterol through dietary and lifestyle approaches.
Lab Analysis
It's good practice to rule out causes of hypercholesterolemia like thyroid disorders, diabetes, and kidney disease. Jen's lab work revealed that she had healthy thyroid function, good blood sugar control, and a normal eGFR. This was great news! It meant we could optimize the other aspects of her health.
Interventions
To help Jen support her health, we did the following:
Nutrition
My team and I worked with Jen to create a customized food-as-medicine meal plan that allowed her to emphasize fiber, reduce the glycemic index of her diet by increasing protein, and raise her Omega-3 consumption.
Increased protein intake to meet 100% RDI by increasing protein sizes at each meal and doubling the protein powder in her morning smoothie. Increased protein and fiber intake relative to carbohydrate intake may result in a better glycemic profile of the diet, which may support better blood lipid control.
Increased fiber intake by adding more nuts and seeds to her diet and an additional serving of fruit. Evidence suggests that increasing fiber intake by 5-10 grams per day can support healthy cholesterol levels over time.
Increased servings of salmon each week to naturally get her more CoQ10 from her diet. Some of Jen's supplements we started her on may deplete CoQ10, so we wanted to make sure she stayed replete during her course of care with us.
Supplements
Red Yeast Rice and CoQ10 formula: 1200mg red yeast rice and 100mg CoQ10 per 2 capsules. Jen took 2 of these capsules twice per day. Red Yeast Rice supplementation may help reduce LDL cholesterol by 15-25% within eight weeks. *Studies show that supplementation with nutrients like folate combined with Red Yeast Rice can support a reduction in LDL cholesterol by 15-31% in 6-48 weeks.
Comprehensive once daily multivitamin to serve as nutritional insurance so that Jen could stay flexible with her diet and lifestyle but still meet her goals. The vitamin recommended contains vitamins A-K, folate biotin, choline, iodine, zinc, selenium, manganese, chromium, molybdenum, boron, inositol, CoQ10, Alpha lipoic acid, lutein, zeaxanthin, and lycopene.
Exercise
We encouraged Jen to include lots of HIIT and weight-bearing exercises in her workout routines to support the health of her bones and increase her HDL cholesterol. Resistance training has been shown to support a reduction in total and LDL cholesterol levels.
Lifestyle changes
We explained to Jen that some research suggests that regular blood donation has been associated with decreased LDL levels, raised HDL cholesterol, and reduced lipid peroxidation (oxidative stress) when done regularly over 24 or more weeks. We encouraged Jen to give blood regularly, which she did.
Follow Up Nutrient Analysis After Individualized Program
Jen's individualized nutrition plan was designed to be healthy, easy to cook, and fun to eat. It was also intended to correct her inadequate intake of total energy, carbohydrates, proteins, minerals, CoQ10, and omega 3's. The nutrient analysis below reveals that she has met >100% RDI for these nutrients except protein and phosphorus each day on average for the five months between April and September of 2020.
While Jen didn't follow her plan closely enough to meet 100% RDI for protein, she did increase her average protein consumption by 10%, from 64% RDI to 74% RDI, and increased her phosphorus intake by 3%. Additionally, she doubled her Omega-3 intake and raised her fiber consumption by 3.2 grams per day on average, close to the 5 grams per day we typically use to support healthy cholesterol levels over time.
Results from a Functional Medicine Treatment Program
Jen's total cholesterol dropped by 83 points in the five months we worked together. Her LDL cholesterol decreased by 62 points, VLDL by 7 points, and triglycerides dropped by 34 points.
As a result of the changes above, Jenβs ASCVD risk fell from 2.0 to 1.7% ten year risk, which is better than optimal.
If Jen continues on this plan, her cholesterol may continue to decrease, and her ten-year risk may stay better than optimal. This means that her risk of a heart attack, stroke, or other cardiovascular event is less than that of the optimally healthy person of her same age, gender, race, and health history. Our plan is to continue to work with Jenβs primary care doctor to monitor her levels yearly to make sure her ASCVD risk stays low.
Discussion
Optimal cholesterol levels depend very much on what other cardiovascular risk factors are present. Recent evidence suggests that total cholesterol levels of 210-230 may actually be optimal for reducing the overall risk of morbidity and mortality in people ages 55-64 (Jenβs demographic). This data comes from a prospective cohort study of more than 12.8 million adults published in 2019. Because of this data, we rely heavily on ASCVD risk calculation, context, and other health data at my clinic before recommending that people take extreme measures to lower cholesterol below 210-230 mg/dl.
β
Jen's cholesterol was 210 after her treatment program with us. Her 10-year risk of a cardiovascular event was better than optimal, so we did not recommend that she take more drastic measures to lower her cholesterol unless directed by her primary care physician.
Summary
You can support healthy cholesterol levels naturally using a comprehensive nutrition and a lifestyle-based approach. Additionally, cholesterol's impact on cardiovascular risk requires a holistic evaluation of a person's health, history, risk factors, and health behaviors. In this case, Jen used a combination of a food-as-medicine plan, good nutrition, and supplementation protocol to help improve her cholesterol and ASCVD risk. We hope her story inspires you to know that you and your loved ones can support healthy cholesterol levels naturally!
*Note: The client's name has been changed to protect her privacy. All other details are the same!
The information in this article is designed for educational purposes only and is not intended to be a substitute for informed medical advice or care. This information should not be used to diagnose or treat any health problems or illnesses without consulting a doctor. Consult with a health care practitioner before relying on any information in this article or on this website.
Learn more
No items found.
Lab Tests in This Article
HDL Cholesterol by Access Med Labs
Serum
This is a single-marker test measuring high-density lipoprotein (HDL) cholesterol. It can be used to determine cardiovascular disease risk.
Abbate SL;Brunzell JD. βPathophysiology of Hyperlipidemia in Diabetes Mellitus.β Journal of Cardiovascular Pharmacology, vol. 16 Suppl 9, 2022, pubmed.ncbi.nlm.nih.gov/1710739/. Accessed 17 May 2022.
Akinbami, Akinsegun, et al. βLipid Profile of Regular Blood Donors.β Journal of Blood Medicine, May 2013, p. 39, www.ncbi.nlm.nih.gov/pmc/articles/PMC3663474/, 10.2147/jbm.s42211. Accessed 31 May 2022.
Barrios, Vivencio, et al. βA Nutraceutical Approach (Armolipid Plus) to Reduce Total and LDL Cholesterol in Individuals with Mild to Moderate Dyslipidemia: Review of the Clinical Evidence.β Atherosclerosis Supplements, vol. 24, Feb. 2017, pp. 1β15, pubmed.ncbi.nlm.nih.gov/27998714/, 10.1016/j.atherosclerosissup.2016.10.003. Accessed 15 May 2022.
Blom, Wendy A. M., et al. βA Low-Fat Spread with Added Plant Sterols and Fish Omega-3 Fatty Acids Lowers Serum Triglyceride and LDL-Cholesterol Concentrations in Individuals with Modest Hypercholesterolaemia and Hypertriglyceridaemia.β European Journal of Nutrition, vol. 58, no. 4, 3 May 2018, pp. 1615β1624, pubmed.ncbi.nlm.nih.gov/29725824/, 10.1007/s00394-018-1706-1. Accessed 8 Oct. 2021.
Cha, Dongjoo, and Yongsoon Park. βAssociation between Dietary Cholesterol and Their Food Sources and Risk for Hypercholesterolemia: The 2012β2016 Korea National Health and Nutrition Examination Survey.β Nutrients, vol. 11, no. 4, 15 Apr. 2019, p. 846, pubmed.ncbi.nlm.nih.gov/30991629/, 10.3390/nu11040846. Accessed 15 May 2022.
Chiavaroli, Laura, et al. βPortfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-Analysis of Controlled Trials.β Progress in Cardiovascular Diseases, vol. 61, no. 1, May 2018, pp. 43β53, pubmed.ncbi.nlm.nih.gov/29807048/, 10.1016/j.pcad.2018.05.004. Accessed 15 May 2022.
Chiu, Sally, et al. βComparison of the DASH (Dietary Approaches to Stop Hypertension) Diet and a Higher-Fat DASH Diet on Blood Pressure and Lipids and Lipoproteins: A Randomized Controlled Trial1β3.β The American Journal of Clinical Nutrition, vol. 103, no. 2, 30 Dec. 2015, pp. 341β347, pubmed.ncbi.nlm.nih.gov/26718414/?from_term=lowering+triglycerides+diet&from_pos=3, 10.3945/ajcn.115.123281. Accessed 10 May 2020.
Cicero, Arrigo F.G., et al. βRed Yeast Rice for Hypercholesterolemia.β Methodist DeBakey Cardiovascular Journal, vol. 15, no. 3, 1 July 2019, p. 192, pubmed.ncbi.nlm.nih.gov/31687098/, 10.14797/mdcj-15-3-192. Accessed 15 May 2022.
Clifton, Peter M. βDiet, Exercise and Weight Loss and Dyslipidaemia.β Pathology, vol. 51, no. 2, Feb. 2019, pp. 222β226, pubmed.ncbi.nlm.nih.gov/30528924/?from_term=lowering+triglycerides+diet&from_pos=1, 10.1016/j.pathol.2018.10.013. Accessed 10 May 2020.
βFamilial Hypercholesterolemia: MedlinePlus Medical Encyclopedia.β Medlineplus.gov, 2019, medlineplus.gov/ency/article/000392.htm#:~:text=Familial%20hypercholesterolemia%20is%20a%20disorder,Familial%20combined%20hyperlipidemia. Accessed 15 May 2022.
Ferro, Charles J., et al. βLipid Management in Patients with Chronic Kidney Disease.β Nature Reviews Nephrology, vol. 14, no. 12, 25 Oct. 2018, pp. 727β749, pubmed.ncbi.nlm.nih.gov/30361677/, 10.1038/s41581-018-0072-9. Accessed 17 May 2022.
Gylling, Helena, et al. βPlant Sterols and Plant Stanols in the Management of Dyslipidaemia and Prevention of Cardiovascular Disease.β Atherosclerosis, vol. 232, no. 2, Feb. 2014, pp. 346β360, pubmed.ncbi.nlm.nih.gov/24468148/, 10.1016/j.atherosclerosis.2013.11.043. Accessed 15 May 2022.
βHigh Cholesterol - Symptoms and Causes.β Mayo Clinic, 2021, www.mayoclinic.org/diseases-conditions/high-blood-cholesterol/symptoms-causes/syc-20350800#:~:text=High%20cholesterol%20has%20no%20symptoms,detect%20if%20you%20have%20it.. Accessed 15 May 2022.
βHypercholesterolemia - Symptoms, Diagnosis and Treatment | BMJ Best Practice US.β Bmj.com, 2022, bestpractice.bmj.com/topics/en-us/170. Accessed 14 May 2022.
Ibrahim, Michael A, et al. βHypercholesterolemia.β Nih.gov, StatPearls Publishing, 7 Nov. 2021, www.ncbi.nlm.nih.gov/books/NBK459188/. Accessed 14 May 2022.
Ioannou, George N. βThe Role of Cholesterol in the Pathogenesis of NASH.β Trends in Endocrinology & Metabolism, vol. 27, no. 2, Feb. 2016, pp. 84β95, www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(15)00233-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1043276015002337%3Fshowall%3Dtrue, 10.1016/j.tem.2015.11.008. Accessed 17 May 2022.
Kelley, GA, and KS Kelley. βImpact of Progressive Resistance Training on Lipids and Lipoproteins in Adults: A Meta-Analysis of Randomized Controlled Trials.β Nih.gov, Centre for Reviews and Dissemination (UK), 2014, www.ncbi.nlm.nih.gov/books/NBK77269/. Accessed 29 May 2022.
Lee, Jun-Hyuk, et al. βNon-Alcoholic Fatty Liver Disease Is an Independent Risk Factor for LDL Cholesterol Target Level.β International Journal of Environmental Research and Public Health, vol. 18, no. 7, 26 Mar. 2021, p. 3442, www.ncbi.nlm.nih.gov/pmc/articles/PMC8037151/, 10.3390/ijerph18073442. Accessed 17 May 2022.
Li, Heng, et al. βHepatic Cholesterol Transport and Its Role in Non-Alcoholic Fatty Liver Disease and Atherosclerosis.β Progress in Lipid Research, vol. 83, July 2021, p. 101109, www.sciencedirect.com/science/article/abs/pii/S0163782721000254?via%3Dihub, 10.1016/j.plipres.2021.101109. Accessed 17 May 2022.
Mach, FranΓ§ois, et al. β2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk.β European Heart Journal, vol. 41, no. 1, 31 Aug. 2019, pp. 111β188, pubmed.ncbi.nlm.nih.gov/31504418/, 10.1093/eurheartj/ehz455. Accessed 15 May 2022.
Mann, Steven, et al. βDifferential Effects of Aerobic Exercise, Resistance Training and Combined Exercise Modalities on Cholesterol and the Lipid Profile: Review, Synthesis and Recommendations.β Sports Medicine, vol. 44, no. 2, 31 Oct. 2013, pp. 211β221, www.ncbi.nlm.nih.gov/pmc/articles/PMC3906547/, 10.1007/s40279-013-0110-5. Accessed 15 May 2022.
NHS Choices. How to Eat Less Saturated Fat. 2022, www.nhs.uk/live-well/eat-well/how-to-eat-a-balanced-diet/eat-less-saturated-fat/. Accessed 15 May 2022.
Oost, Lynette J., et al. βSerum Magnesium Is Inversely Associated with Heart Failure, Atrial Fibrillation, and Microvascular Complications in Type 2 Diabetes.β Diabetes Care, vol. 44, no. 8, 18 June 2021, pp. 1757β1765, pubmed.ncbi.nlm.nih.gov/34385344/, 10.2337/dc21-0236. Accessed 18 May 2022.
Pastore, Robert L., et al. βPaleolithic Nutrition Improves Plasma Lipid Concentrations of Hypercholesterolemic Adults to a Greater Extent than Traditional Heart-Healthy Dietary Recommendations.β Nutrition Research, vol. 35, no. 6, June 2015, pp. 474β479, pubmed.ncbi.nlm.nih.gov/26003334/?from_term=lowering+triglycerides+diet&from_pos=4, 10.1016/j.nutres.2015.05.002. Accessed 10 May 2020.
Petrov, A M, et al. βBrain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction.β Acta Naturae, vol. 8, no. 1, 2016, pp. 58β73, www.ncbi.nlm.nih.gov/pmc/articles/PMC4837572/#:~:text=Cholesterol%20is%20a%20major%20lipid,%2Fg%20tissue%20%5B1%5D.. Accessed 15 May 2022.
Rosin, Susanna, et al. βOptimal Use of Plant Stanol Ester in the Management of Hypercholesterolemia.β Cholesterol, vol. 2015, 12 Oct. 2015, pp. 1β6, www.ncbi.nlm.nih.gov/pmc/articles/PMC4620290/#:~:text=Plant%20stanol%20ester%20works%20by,into%20mixed%20micelles%20%5B14%5D., 10.1155/2015/706970. Accessed 15 May 2022.
Saini, Rajiv. βCoenzyme Q10: The Essential Nutrient.β Journal of Pharmacy and Bioallied Sciences, vol. 3, no. 3, 2011, p. 466, www.ncbi.nlm.nih.gov/pmc/articles/PMC3178961/, 10.4103/0975-7406.84471. Accessed 29 May 2022.
Santini, Antonello, and Ettore Novellino. βNutraceuticals in Hypercholesterolaemia: An Overview.β British Journal of Pharmacology, vol. 174, no. 11, 29 Oct. 2016, pp. 1450β1463, www.ncbi.nlm.nih.gov/pmc/articles/PMC5429323/, 10.1111/bph.13636. Accessed 15 May 2022.
Schoeneck, Malin, and David Iggman. βThe Effects of Foods on LDL Cholesterol Levels: A Systematic Review of the Accumulated Evidence from Systematic Reviews and Meta-Analyses of Randomized Controlled Trials.β Nutrition, Metabolism and Cardiovascular Diseases, vol. 31, no. 5, May 2021, pp. 1325β1338, pubmed.ncbi.nlm.nih.gov/33762150/, 10.1016/j.numecd.2020.12.032. Accessed 15 May 2022.
St-Onge, Marie-Pierre, and Aubrey Bosarge. βWeight-Loss Diet That Includes Consumption of Medium-Chain Triacylglycerol Oil Leads to a Greater Rate of Weight and Fat Mass Loss than Does Olive Oil.β The American Journal of Clinical Nutrition, vol. 87, no. 3, 1 Mar. 2008, pp. 621β626, pubmed.ncbi.nlm.nih.gov/18326600/?from_term=lowering+triglycerides+diet&from_pos=7, 10.1093/ajcn/87.3.621. Accessed 10 May 2020.
Tekpli, Xavier, et al. βRole for Membrane Remodeling in Cell Death: Implication for Health and Disease.β Toxicology, vol. 304, Feb. 2013, pp. 141β157, pubmed.ncbi.nlm.nih.gov/23287390/, 10.1016/j.tox.2012.12.014. Accessed 15 May 2022.
Trautwein, Elke A., and Sue McKay. βThe Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk.β Nutrients, vol. 12, no. 9, 1 Sept. 2020, p. 2671, www.ncbi.nlm.nih.gov/pmc/articles/PMC7551487/, 10.3390/nu12092671. Accessed 15 May 2022.
van Jaarsveld, Henretha, and Gertruida F. Pool. βBeneficial Effects of Blood Donation on High Density Lipoprotein Concentration and the Oxidative Potential of Low Density Lipoprotein.β Atherosclerosis, vol. 161, no. 2, Apr. 2002, pp. 395β402, pubmed.ncbi.nlm.nih.gov/11888523/, 10.1016/s0021-9150(01)00638-4. Accessed 31 May 2022.
Zhang, Xian, et al. βIgE Contributes to Atherosclerosis and Obesity by Affecting Macrophage Polarization, Macrophage Protein Network, and Foam Cell Formation.β Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 40, no. 3, Mar. 2020, pp. 597β610, pubmed.ncbi.nlm.nih.gov/31996021/, 10.1161/atvbaha.119.313744. Accessed 15 May 2022.
Hey Practitioners! On December 11th, join Dr. Terry Wahls in a free live class where she'll share her groundbreaking methods for managing MS and autoimmune patients. This live session will address your most pressing questions and will take a closer look at treatment options beyond the conventional standards of care. Register here.